BOUT++ Physics development

Presented to 2015 BOUT++ mini-Workshop

Xueqiao Xu and BOUT++ team

Dec 16-18, 2015, Livermore, California

ACKNOWLEDGMENTS

The author would like to acknowledge significant contributions to this presentation from following collaborators:

- B. Cohen, J. G. Chen, A. Diallo, A. Dimits, B. Dudson,
- P. H. Diamond, M. E. Fenstermacher, X. Gao,
- R. Groebner, Ted Golfinopoulos, C. Holland,
- A. E. Hubbard, J.W. Hughes, I. Joseph, Z.X. Liu,
- M. Kim, S. S. Kim, D. F. Kong, G. Q. Li, C. H. Ma,
- J. F. Ma, B. H. Meyer, P. B. Snyder, T. F. Tang,
- M. V. Umansky, H. Wilson, Z. H. Wang, P. W. Xi,
- T. Y. Xia, G. S. Xu, and N. Yan.

Tokamak edge region encompasses boundary layer between hot core plasma and material walls

- Complex geometry
- Rich physics (plasma, atomic, material)
- Sets key engineering constraints for fusion reactor
- Sets global energy confinement

Tokamak interior

BOUT (BOUndary Turbulence) was originally developed at LLNL in late 1990s for modeling tokamak edge turbulence

BOUT++ is a successor to BOUT, developed in collaboration with Univ. York

[•] X.Q. Xu and R.H. Cohen, Contrib. Plasma Phys. 38, 158 (1998)

Xu, Umansky, Dudson & Snyder, CiCP, V. 4, 949-979 (2008).

[•] Umansky, Xu, Dudson, et al., , Comp. Phys. Comm. V. 180 , 887-903 (2008).

Dudson, Umansky, Xu et al., Comp. Phys. Comm. V.180 (2009) 1467.

Xu, Dudson, Snyder et al., PRL 105, 175005 (2010).

Principal BOUT++ Activities

Electron Temperature Perturbation

- > A suite of two-fluid multiple-field models has been implemented in BOUT++ for
 - ✓ all ELM regimes and fluid turbulence
 - T. Y. Xia, 3rd talk this afternoon
- ➤ A suite of 3+1 Gyro-Landau-Fluid models is also developed for
 - ✓ pedestal kinetic turbulence and transport
 C.H. Ma, 2nd talk this afternoon
- > Fluid neutral models are developed for
 - ✓ SMBI, GAS puffing, Recycling
- A PIC module for impurity generation and transport
- Coupling BOUT++ and SOLPS for divertor heat flux contr.

BOUT++ has been applied to a range of problems, including simulation of ELMs, plasma blobs, turbulence, & magnetic reconnection

Benchmarks

(module elm_pb)

BOUT++ 3-field reduce MHD model (module elm_pb)

• 3-field reduced MHD equations evolve pressure P, vorticity ϖ and perturbed magnetic vector potential A_{\parallel} :

$$egin{aligned} rac{\partial \widetilde{oldsymbol{arphi}}}{\partial t} + v_E \cdot oldsymbol{V} \widetilde{oldsymbol{arphi}} &= B_0 oldsymbol{V}_\parallel \widetilde{oldsymbol{J}}_\parallel + 2 b_0 imes k_0 \cdot oldsymbol{V} \widetilde{oldsymbol{P}} \ & rac{\partial P}{\partial t} + v_E \cdot oldsymbol{V} P &= 0 \ & rac{\partial \widetilde{A}_\parallel}{\partial t} &= -oldsymbol{V}_\parallel oldsymbol{\Phi} + rac{\eta}{\mu_0} oldsymbol{V}_\perp^2 \widetilde{A}_\parallel \end{aligned}$$

The variables in the equations are defined as:

$$egin{aligned} \widetilde{oldsymbol{arphi}} &= rac{n_0 M_i}{B_0} \left(
abla_\perp^2 \widetilde{oldsymbol{\phi}} + rac{1}{n_0 Z_i e}
abla_\perp^2 \widetilde{oldsymbol{P}}
ight), oldsymbol{\Phi} &= \widetilde{oldsymbol{\phi}} + oldsymbol{\Phi}_0, k_0 = b_0 \cdot
abla b_0 \ J_{\parallel} &= J_{\parallel 0} - rac{1}{\mu_0}
abla_\perp^2 \widetilde{A}_{\parallel}, \qquad v_E = rac{1}{B_0} (b_0 imes
abla_\perp oldsymbol{\Psi}_\perp oldsymbol{\Phi}) \end{aligned}$$

• In the equations, for any variable F, \widetilde{F} is the perturbed component, $abla_{\parallel}F=B\partial_{\parallel}(F/B)$, $\partial_{\parallel}=\partial_{\parallel}^0+b\cdot
abla$, $b=B/B=
abla_{\parallel}A_{\parallel} imes b_0/B$, $\partial_{\parallel}^0=b_0\cdot
abla$

JET-like Equilibrium model

- Based on the cbm18 equilibrium sequence
- Circular plasma, with a "vacuum" region
- BOUT++ computation region is ψ [0.2, 1.4]

Plasma configuration

Current and pressure profiles

A set of JET-like equilibria with different edge current

- Based on the cbm18_dens8 equilibrium, using the CORSICA code, a sequence of equilibrium with different edge current are created
- Keep total current and pressure profile fixed

Edge current has stabilizing effects on the ballooning modes

- As the edge current increases, the medium n ballooning modes are stabilized, the dominant mode is changed from ballooning modes to low-n kink modes
- The ballooning stabilization effect is due to the increase of local shear at the outer mid-plane

Linear growth rate v.s. toroidal mode number

RMS of perturbed pressure, the height is normalized with linear growth rate

Good agreement between BOUT++, ELITE and GATO for both peeling and ballooning modes

- As edge current increases, the difference between BOUT++ and GATO/ELITE results becomes large
- This difference is due to the vacuum treatment

0.0

0.2 0.4

0.6 0.8 1.0 1.2 1.4

For the real "vacuum" model, the effect of resistivity should be included as BOUT++

0.0 0.2

Benchmark results for elongated plasma for both peeling and ballooning modes

- Elongated dbm18 equilibrium
 - Elong=1.32, R0=3m, Ip=2.25MA, Bt0=2.0T, betaN=1.68
- BOUT++ agrees with GATO if they use same vacuum model
- Vacuum model has small effects on the stability, though it is the ballooning dominated mode

Nonlinear ELM simulations show three stages of an ELM event

- BOUT++ 3-field reduce MHD model evolves
 - ✓ pressure *P*
 - ✓ vorticity ϖ
 - \checkmark magnetic vector potential A_{\parallel}
- Based on a set of JET-like magnetic equilibria
 - ✓ Circular plasma, with a "SOL" region
 - ✓ BOUT++ computation region in ψ [0.1, 1.4]

ELM: Edge-localized Modes

- The ELMs are quasiperiodic relaxations of the pedestal, resulting in a series of hot plasma eruptions
 - ✓ Potentially damage the ITER divertor plates and first walls

ELM: Edge-localized Modes

- The ELMs are quasiperiodic relaxations of the pedestal, resulting in a series of hot plasma eruptions
 - ✓ Potentially damage the ITER divertor plates and first walls

Principal Results

- Demonstrated the linear and nonlinear characteristics of ELMs at different collisionality & Er via a density scan
- By increasing collisionality, nonlinear simulations show that
 - ✓ Power spectrum becomes broad, the dominant mode increases from n=6 to n=35
 - ✓ Bispectrum analysis shows that nonlinear mode coupling becomes stronger, resulting in the lack of dominant filamentary structures and reduced ELM energy loss.

- The impact of radial electric field Er on peeling and ballooning modes is different.
 - ✓ The increase Er significantly enhances the linear growth rate of low-n peeling modes, but only weakly impacts on nonlinear ELM energy loss
 - ✓ The increase Er leads to large suppression of nonlinear ballooning amplitudes, but only weakly impacts on their linear growth rates.

We create a set of equilibria with the self-consistent variation of density and temperature profiles, while keeping the plasma cross-sectional shape, total stored energy, total plasma current and pressure profile fixed.

- ightharpoonup Eight cases: $n_e(0)=1, 3, 5, 7, 9, 12, 15, 20x10^{19} m^{-3}$.
- $> n_e = n_e(0) * \left(\frac{P0}{P0(0)}\right)^{0.3}, T_e = \frac{P0}{2n_e}.$

$$\mathbf{V}_{\perp 0} = \frac{1}{Zen_{i0}} \frac{\mathbf{b} \times \nabla P_{i0}}{B} + \frac{\mathbf{b} \times \nabla \Phi_{dia0}}{B}$$

Nonlinear ELM simulations show three stages of an ELM event

- 1) a linear growth phase
- 2) a fast crash phase
- 3) a slow inward spreading phase
 - In 3-field 2-fluid model, total energy loss (P) shows a similar spreading
 - In 3+1 GLF model, Electron perturbation provides the spreading, eventually dominates the total energy loss with a large conductive energy loss

C. H. Ma, et al. Phys. Plasmas 22, 010702 (2015)

As the edge density (collisionality) increases for fixed Er, the growth rate of the P-B mode increases for high n but decreases for low n (1<n<5)

- ☐ The ballooning term dominates the high n modes. Because ion diamagnetic drift is inversely proportional to the density for fixed pressure, when density increases, the ion diamagnetic stabilization decreases and growth rate increases.
- ☐ The kink term dominates the low n modes. Therefore, as the density increases, the edge current decreases and growth rate decreases.

The growth time of linear drive is determined by nonlinear process via phase evolution for large ELM crash

Phase coherence time (PCT, τ_c): the length of time duration of the relative phase for linear growth

- ightarrowLinear theory/simulations: unchanged $\delta arphi \Rightarrow au_c
 ightarrow \infty$
- →The growth time is determined by nonlinear Phase Scattering

2D bispectrum shows that nonlinear mode coupling becomes stronger at high collisionality v^*

Stronger nonlinear mode coupling at high v^* leads to the lack of dominant filamentary structures and the reduced ELM energy loss.

BOUT++ simulations show collisionality scaling of ELM energy losses consistent with ITPA multi-tokamak databas

As the edge collisionality decreases, both linear and nonlinear physics set ELM energy loss

- ☐ Linearly, the dominant P-B mode shifts to lower n and the spectrum width of the linear growth rate decreases
- Nonlinearly,

Narrow mode spectrum → Weak nonlinear Phase Scattering →Long PCT →Large ELMs

Equilibrium electric field model

$$\mathbf{V}_{\perp \mathbf{0}} = \frac{1}{Zen_{i0}} \frac{\mathbf{b} \times \nabla P_{i0}}{B} + \frac{\mathbf{b} \times \nabla \Phi_{dia0}}{B}$$

$$\widehat{\Phi}_{dia0} = -\frac{\bar{B}}{1.4\mu_0 ZeV_A \bar{L} N \hat{n}_{i0}} \frac{\widehat{P}_{00}^{0.3} \widehat{P}_{0}^{0.7}}{\widehat{B}_{0}}$$

Evolution of electric field during ELM crashes

At the beginning, the electric field was increased by a factor of about 3 times

low density, strong current -> peeling dominant, sharp and narrow $\gamma(n)$ high density, weak current -> ballooning dominant, flat and wide $\gamma(n)$

Growth rate spectrums vs density & toroidal mode number

Toroidal mode number

linear growth rate spectrum after turning off peeling drive

Impact of Er on growth rate of PM, PBM and BM

The increase Er only weakly impacts on the amplitude of peeling fluctuations; while the increase Er leads to large suppression of nonlinear ballooning amplitudes.

Increasing Er by a factor of 3, ELM size increases significantly at low collisionality ($n_0=5x10^{19} / m^3$ and $n_0=9x10^{19} / m^3$)

Increasing Er leads to the suppression of ELM size at high collisionality (n₀=20x10¹⁹/m³)

Impact of collisionality and Er on amplitude spectrum and bispectrum of peeling and ballooning mode

- By increasing collisionality, nonlinear simulations show that
 - amplitude spectrum becomes broad
 - the dominant mode changes from n=6 to n=35
 - nonlinear interactions are strongly enhanced.
- The increase Er can also enhance the nonlinear coupling between modes

D.F. Kong, 57th APS DPP, November 16-20, 2015 • Savannah, Georgia

ELM suppression by intermittent small scale turbulence induced by SMBI

X. L. Zou. 24th IAEA FEC, San Diego, US, (PD/P8-08), 2012.

Experimental results on EAST: Impact of collisionality (with SMBI) on ELM size

After SMBI (collisionality increased):

- 1. ELM size is mitigated and particle transport is mainly contributed by high frequency turbulence;
- 2. Bispectrum analysis indicate that the nonlinear interactions are greatly enhanced at high collisionality.
 - 1. X. L. Zou. 24th IAEA FEC, San Diego, US, (PD/P8-08), 2012.

before SMBI after SMBI

2. Bispectrum analysis results are provided by Adi Liu (USTC)

Preliminary experimental results on EAST: Impact of toroidal rotation (Er?) on ELM size

Low co-NBI

2.5 1 0.5 2.05 2.1 2.15 2.2 2.25 2.3 2.35 0 2.15 2.2 R (m)

-□-- co-NBI -○-- con-NBI

- ELM study with co NBI and con NBI:
- ELM size is modulated by injecting direction of NBI with smaller ELM size at con NBI.
- 2) Stored energy and density profiles remain almost the same (collisionality remains the same?)
- 3) Toroidal rotation (Er) playing an important role in modifying the ELM?

Impact of co-NBI and con-NBI on nonlinear coupling on EAST

- Left Figure: the electric field $(E_r \propto f_{Doppler})$ with con-NBI is larger than that with co-NBI;
- Right Figure: nonlinear interactions among different modes become stronger in con-NBI (or larger Er) case comparing to the co-NBI case.
- Those observations on EAST are consistent with the simulation results by BOUT++ mentioned before.

Principal Results

- Demonstrated the linear and nonlinear characteristics of ELMs at different collisionality & Er via a density scan
- By increasing collisionality, nonlinear simulations show that
 - ✓ Power spectrum becomes broad, the dominant mode increases from n=6 to n=35
 - ✓ Bispectrum analysis shows that nonlinear mode coupling becomes stronger, resulting in the lack of dominant filamentary structures and reduced ELM energy loss.

- The impact of radial electric field Er on peeling and ballooning modes is different.
 - ✓ The increase Er significantly enhances the linear growth rate of low-n peeling modes, but only weakly impacts on nonlinear ELM energy loss
 - ✓ The increase Er leads to large suppression of nonlinear ballooning amplitudes, but only weakly impacts on their linear growth rates.
- New ELM control tool: via radial electric field Er

Integrated multi-scale simulations for ELM crashes and recovery

Principal results for full ELM cycles with ELM dynamics

- Separate the dynamical equations into equations for the fluctuating and axisymmetric components improve computational efficiency
- The axisymmetric components of the pressure and vorticity are on the slow transport timescale while the fluctuations are on a rapid timescale to changes in the profiles
- The axisymmetric projection of nonlinear fluxes that are bilinear in fluctuating quantities, such as, the energy flux, act as drive terms for the axisymmetric quantities that determine the profiles
- The equations are a set of coupled convection-diffusion equations, including
 - **ELMs**
 - Micro-turbulence & neoclassical transport
 - flux-limited parallel transport
 - sources and sinks

Pedestal Pressure at ψ=0.604

0.0125

0.0120

Simulation tracks five ELM cycles for 10000 Alfven times

- > The pedestal pressure profile collapses and recovers to a steep gradient
- Strong poloidal non-uniformity, even with the flux-limited Spitzer-Harm parallel heat diffusivity

Simulated ELM cycles are similar to DIII-D expts.

- The pedestal pressure profile collapses and recovers to a steep gradient
- Simulations are for small ELMs, DIII-D data for large ELMs

In addition to ELMs,

Fluctuations are simulated for comparison Between ELMs in H-mode & During ELM-suppressed I-Modes

(module 6f_divertor_imp)

- BOUT++ 3D 6-field 2-fluid electromagnetic model evolves
 - √ density n_i,
 - √ ion temperature T_i
 - √ parallel velocity v_{||i}
 - √ electron temperature T_e
 - \checkmark vorticity ϖ
 - \checkmark magnetic vector potential A_{\parallel}
- Based on a set of C-Mod and DIII-D experiments
 - ✓ realistic X-point magnetic and plasma profiles
 - ✓ BOUT++ computation region across the magnetic separatrix

Various coherent fluctuation structures observed in Alcator C-Mod and other Tokamaks

I-modes: has a temperature pedestal but no density

pedestal, ELM-free

2012 IAEA EX/1-3 **I.Cziegler** 2015 APS Invited BI2.04

ELMy H-mode on C-Mod

J. W. Hughes, Nucl. Fusion 53 (2013) 043016

A Diallo, APS invited, 2014, JET-Perez PPCF 2004 A Diallo, PRL v112 115001(2014) **AUG-Laggner EPS 2015**

There is experimental evidence that Quasi-coherent fluctuations (QCFs) lead to the saturation of the pedestal between ELMs on C-Mod, DIII-D, AUG, & JET

- QCFs Observed as density & magnetic fluctuations
- Pedestal-Localized QCFs with onsets for ∇T_a
- QCFs are different from QCMs in ELM-free EDA H-mode
- Weakly Coherent Modes (WCMs) in I-mode
 - mid-range frequency,(~200-400 kHz)
 - lead to large $D_{e_i} D_e > \chi_e$

C-Mod experimental plasma profiles are used in Kinetic EFIT MHD equilibria calculations and BOUT++ simulations

- Dedicated ELMy discharges were performed
 - $B_T = 5.4 T \& Ip = 0.9 MA$
- Difference between the I-mode and H-mode pedestals
 - Lack of a particle barrier & no ELMs in I-mode
- I-mode has lower pressure & current than H-mode
 - Weakly Coherent Modes (WCMs) in I-mode
 - Quasi-coherent fluctuations (QCFs) between ELMs in ELMy H-mode

C-Mod pedestal simulations show ELMy H-mode and I-mode exhibit different underlying instabilities

Linear simulations indicate that

- > WCMs are unstable for resistive ballooning mode and drift-Alfven wave
- QCFs are marginal unstable near Peeling-Ballooning threshold

BOUT++ simulations show similar evolution of Quasi-Coherent Fluctuations as C-Mod magnetic probe measurements and good agreement

Linear and nonlinear BOUT++ analyses show similar frequency evolution as Quasi-Coherent Fluctuations (QCFs) on DIII-D expts.

BOUT++ simulations of C-Mod show similar onsets of the QCF with electron temperature gradient ∇T_e observed in DIII-D

DIII-D expt.

Diallo, Phys. Plasmas 22, 056111 (2015)

Evolution of QCF amplitude and Temperature gradient

- QCF onsets for a given critical temperature gradient ∇T_e
- Temperature gradient ∇T_e and QCF amplitude track each other

Increasing ∇T_e at the edge should increase the QCFs intensity, while increasing ∇T_i doesn't.

Weakly Coherent Modes (WCMs) in I-modes have been simulated for comparison with expts.

The dominant mode n=20 near the position of the reflectometer shows a similar frequency peak in I-Modes

- The spectrum of the mode n=20 is similar to the experimental result from the reflectometer
- > The spectrum of total modes also has the peak around 300kHz.

I-mode: Particle diffusivity is larger than thermal (D>> χ_e) H-mode: Particle diffusivity is smaller than thermal (D<< χ_e)

- \triangleright Larger particle diffusivity is consistent with the key feature of I- mode, D>> $\chi_{\rm e}$
- Predicted $\chi_{\rm e}$ and $\chi_{\rm i}$ (dashed curves) are close to experimental $\chi_{\rm eff}$ (from power balance over 0.95 < ψ <1) for I-mode

Summary

The high-fidelity BOUT++ two-fluid suites have demonstrated significant recent progress toward integrated multi-scale simulations

- ✓ including ELM dynamics, evolution of ELM cycles, and continuous fluctuations, as expts.
- Nonlinear ELM simulations show three stages of an ELM event
 - ✓ Collisionality scaling of ELM energy losses consistent with ITPA multi-tokamak database
- Nonlinear integrated multi-scale ELM simulations:
 - ✓ Simulation tracks five ELM cycles for 10000 Alfven times for small ELMs
- To validate BOUT++ simulations & find better regimes, both quasi-coherent fluctuations (QCFs) in ELMy
 H-modes and Weakly Coherent Modes (WCMs) in I-modes have been simulated for comparison with
 expts.
 - 1) H-mode simulations predict that
 - √ the QCFs are near marginal instability for ideal peeling-ballooning modes
 - \checkmark the predicted particle diffusivity is smaller than the heat diffusivity, D>> χ_e
 - 2) I-mode simulation results are that
 - \checkmark a strong instability exists at n ≥ 20, for resistive ballooning modes and drift-Alfven wave
 - \checkmark the predicted particle diffusivity is larger than the heat diffusivity, D<< $\chi_{\rm e}$
- A successful cooperation between simulation and experiment teams